
Capstone Project Report

Automated Detection and Analysis
of Common Preambles and Their
Meanings in Source Code Identifiers

Research Advisor
Dr. Christian D. Newman

Software Engineer MS Student
Henry Keena

Date
May 5th, 2023



Automated Detection and Analysis of Common Preambles
and Their Meanings in Source Code Identifiers

Henry Keena
Software Engineering MS, GCCIS, Rochester Institute of Technology

htk4363@rit.edu

Advisor: Dr. Christian D. Newman

ABSTRACT
The interpretation of identifier names is a

significant problem in software development.
Programmers must interpret identifier names before
performing any software development or
maintenance task, code search and analysis
techniques use identifier names to provide useful
services to developers. Having high quality identifier
names reduces the amount of time developers spend
reading code and increases the accuracy of
techniques that use natural language information to
support developers. Preambles are a particular type of
token found in identifiers. Unlike typical tokens,
Preambles add no new information to the meaning of
am identifier’s name—but instead specify certain
types of behavior (e.g., pointers) or help namespace
(e.g., in the case of the C programming language)
identifiers to a specify module. Because preambles
add no new information, they should be removed
from, or at least identified in, identifiers before code
analysis tries to interpret identifier name meaning.
The goal of my project is to validate and augment the
types of preambles described in prior work and create
a technique that can automatically detect preambles.

KEYWORDS
Preamble, Natural Language Processing (NLP),
Socio-Technical Grounded Theory, Hungarian
Notation, Underscore, Upper Case, Lower Case,
Mixed Case

1. INTRODUCTION
Code comprehension and interpretation is a

critical component of modern software engineering.

New engineers who join existing development teams,
be it for private projects or open source software, take
significant time to adjust and become familiar with
the existing code base. As a result, it has become
imperative for developers to become familiar with a
code base as quickly as possible, so as to optimize
development time and effort on part of the
developers. This project attempts to tackle one of the
issues facing this greater scheme problem.

Among the components of code stylization
that is of considerable attention is the preamble.
Preambles are tokens present in source code
identifiers that do not add additional information
regarding the meaning or purpose of a given
identifier, only specify limited information regarding
type or behavior. Because in modern software
development this kind of identifier token is
redundant, there becomes a need to either remove
them from the identifiers, or augment them in manner
so as to make them efficiently understandable by
developers.

This project aims to provide a tool that can
effectively, and efficiently, detect, process, and
analyze source code identifiers for preambles, then
catalog and categorize them by type and function.
This project achieves those goals by implementing a
methodology that appropriately utilizes natural
language processing techniques alongside
socio-technical grounded theory.

2. METHODOLOGY
In order to properly identify, collect, and

analyze preambles from source code identifiers, a
comprehensive methodology was devised:

mailto:htk4363@rit.edu


2.1 Collection of Raw Data
Test data for this project came in the form of

source code identifiers from 40 open source project
code bases. Using a set of preexisting SCANL tools,
the source code identifiers were gathered from all
source files in each project. Open source projects to
be used in the development of this project were
determined based on two factors: programming
language, and size.

Programming language was a critical
consideration of the development of this project.
Programming languages selected for this project were
all members of the C programming language family,
namely: C, C++, C#, and Java.

Additionally, test project size was a
consideration. Selected projects for testing the
implementation of the preamble collection tool
needed to hold a significant quantity of source code
identifiers. This was determined by selecting the
largest projects of a given language, by source file
size/count, from GitHub.

2.2 Assemble Preamble Heuristics Set
The next step in the methodology of this

project, was to create an appropriate taxonomy and
heuristics set to analyze a source code identifier
against. These heuristics and taxonomies would
consist of available characteristics of preambles as
defined in previous research. Additionally, from each
non single character source identifier, in every test
project, the first term was collected(ie. the first term
from 'strVar1' would be 'str'). These first terms were
then manually reviewed to determine if they
contained determined characteristics of preambles.

2.3 Conduct Identifier Preamble Analysis
Finally, once the taxonomy of preamble

characteristics and first terms had been created from
the test dataset, every source code identifier would be
parsed, processed, and analyzed to determine if they
contained a preamble. The results would then be
logged into an output CSV file.

Figure 1. Project Flowchart

This project was implemented in
Python(v3.11.2). Preamble detection logic was
written natively, identifier collection utilized
automation of a number of existing dependencies and
packages.

Figure 2. Preamble Collection Tool Usage Dialogue

3. Results & Discussion
The results of running the project tool

implementation across the 40 project dataset resulted
in the detection of roughly 3,749,701 unique
identifiers. From these unique identifiers, a total of
3,636,252 were filtered and determined to not contain
preambles. This left a total of 113,449 identifiers
detected to contain identifiers, or roughly 0.03% of
the original count of identifiers.

Figure 3. Preamble Collection Tool Analysis Results



From these results, further statistical
analysis was conducted to determine the distribution
of preambles by programming language, as well as
distribution of preambles by preamble type.

Figure 4. Distribution of Preambles by Programming
Language

Figure 5. Distribution of Preambles by Preamble
Type

4. CONCLUSIONS & FUTUREWORK
While the results of testing the preamble

collection tool showed that only 0.03% of the original
number of source code identifiers, this would still be
considered to be high accuracy on the part of the
project itself. There are a number of factors for this
reasoning. Firstly, preambles are not a "standard"
token, rather they could be considered akin to a code
smell, or are simply poor practice, when it comes to
naming or stylization conventions. Additionally, the
code bases used in this project are highly extensive,
but not of equal weight individually. Some of the
projects used range in size from megabytes to
gigabytes in scale of sheer source file size. Many of
these projects are also maintained by professional

developers with many years of software development
experience. It can be logically extrapolated that the
developers of such projects would be less likely, but
not never, to push code that contain preambles in
their identifiers. The results from the dataset tests
demonstrated not only was the tool able to detect and
process identifiers in large code bases, but that it
could also appropriately categorize and analyze said
identifiers.

Future work would include a more
comprehensive study using the preamble collection
tool, and collections from code bases of equal size
and number of unique identifiers, to not only create a
more complete dataset on the distribution and
prevalence of preambles in code bases. Additionally,
the preamble collection tool may be updated in the
future to not only rely on natural language processing
based heuristics, but potentially from a machine
learning based approach as well.

REFERENCEDWORKS
Project GitHub:

● https://github.com/SCANL/preamble_collec
tion_tool

Published Research & Works:
1. Hoda, R. (2021, September 9).

Socio-technical grounded theory for
software engineering. arXiv.org.
https://arxiv.org/abs/2103.14235

2. Newman, C. D., AlSuhaibani, R. S., Decker,
M. J., Peruma, A., Kaushik, D., Mkaouer,
M. W., & Hill, E. (2020, July 15). On the
generation, structure, and semantics of
grammar patterns in source code identifiers.
arXiv.org. https://arxiv.org/abs/2007.08033

Implementation Dependencies:
● https://github.com/SCANL/srcml_identifier

_getter_tool
● https://github.com/srcML/srcML
● https://github.com/casics/spiral
● https://pyenchant.github.io/pyenchant/

Java Dataset Projects:
1. https://github.com/jenkinsci/jenkins
2. https://github.com/junit-team/junit4
3. https://github.com/google/auto
4. https://github.com/libgdx/libgdx
5. https://github.com/elastic/elasticsearch
6. https://github.com/spring-projects/spring-bo



ot
7. https://github.com/google/guava
8. https://github.com/spring-projects/spring-fra

mework
9. https://github.com/google/guice
10. https://github.com/ReactiveX/RxJava

C Dataset Projects:
1. https://github.com/curl/curl
2. https://github.com/openssl/openssl
3. https://github.com/torproject/tor
4. https://github.com/nothings/stb
5. https://github.com/raysan5/raylib
6. https://github.com/ggerganov/ggml
7. https://github.com/pbatard/rufus
8. https://github.com/FFmpeg/FFmpeg
9. https://github.com/Klipper3d/klipper
10. https://github.com/betaflight/betaflight

C++ Dataset Projects:
1. https://github.com/bitcoin/bitcoin/
2. https://github.com/xbmc/xbmc
3. https://github.com/google/googletest
4. https://github.com/tensorflow/tensorflow
5. https://github.com/boostorg/beast
6. https://github.com/opencv/opencv
7. https://github.com/fmtlib/fmt
8. https://github.com/WerWolv/ImHex
9. https://github.com/cemu-project/Cemu
10. https://github.com/TheAlgorithms/C-Plus-Pl

us
C# Dataset Projects:
1. https://github.com/Azure/azure-functions-co

re-tools
2. https://github.com/dotnet/aspnetcore
3. https://github.com/PowerShell/PowerShell
4. https://github.com/veler/DevToys
5. https://github.com/microsoft/Power-Fx
6. https://github.com/Ryujinx/Ryujinx
7. https://github.com/miroslavpejic85/p2p
8. https://github.com/lars-berger/GlazeWM
9. https://github.com/microsoft/MixedRealityT

oolkit-Unity
10. https://github.com/files-community/Files


